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GENERAL NON-TITERATIVE SOLUTION OF THE

TINVERSE AND DTRECT GEODETIC PROBLEMS

I. INTRODUCTORY BACKGROUND

Earlier, at the Army Map Service, the writer published a com-
prehensive study [1] for the rigorous non-iterative inverse solution
of long geodesics, following its presentation at the XI General
Assembly of the Internationral Union of Geodesy and Geophysics. (At
present, a translation by the German secdetic Commission and an
abstract by the U, S. S. R, Academy of Sciences, complete with final
formulas, are also available.) The method received favorable commen-
taries from several authoritative writers on the subject. A com-
parative evaluation study published in [2] indicated that the method
was as accurate as contemporary solutions, yet simpler and shorter
to compute. The procedure does not require any special geodetic
tables and calls for relatively few trigonometric interpolations.
0f greatest interest was the fact that it was the first rigorous
‘non-iterative inverse solution to go not only beyond the first power
of spheroidal flattening but through all the cubic terms of flatten-
ing., Yet, it was practical,

II. THEORETICAL REFINEMENT OF NON-ITERATIVE INVERSE

Since [1] represented only the formative stage of development,
the next phase consisted of making a thorcugh mathematical analysis
of the formulas in order to determine whether there were any con-
cealed intrinsic properties or relationships which could be used to
obtain an optimum solution, This analysis resulted in the uncover-
ing of three basic quantities, a, m, and ¢, the exclusive substi-
tution of which promised a concise, orderly pattern for the texms
of the two main spheroidal power series, x and 8, that were origi-
nally given in [1], at the top of page 18 and the bottom of page
19, respectively.

III. DEVELOPMENT OF CORRESPONDING DIRECT

Since there were indications that a, m, and ¢ were a rather
unique set of quantities {as will be shown later), an attempt was
also made to introduce their equivalent into the formulation of a
corresponding Direct solution, which o far was lacking. As if by
design, two spheroidal power series resulted, again with a simple,
orderly pattern of terms. Moreover, the fomat was identical to
that of the Inverse, The three corresponding basic quantities were
denoted as a;, m, and'¢s. This Direct solution was derived from
the formulas on pages 14%and 15 of [1]. Essentially, the power
series of the quantity S (now appearing also in Appendix E) was used




to solve for ¢,; then the rxpression of ¢y was in turn placed into
the ) power series, A critical factor in the mathematical determi-
nation of a, and m; was the proper choice of their common smaller
order term .5e'® sin® B, , which is probably one in a series of others
required for the orderly theoretical extension of the solution to
higher degree,

TV, NOTES ON COMPUTATION FORMS

The above efforts led to the Inverse and Direct computation forms
now shown in Appendices A and B, respectively., The main Inverse
spheroidal expressions are indicated by (8 + by) and () - L) + c,
while the Direct by ¢y and (L - L) + cos B,. It is to be noted that
their outer coefficients are simple product combinations of a and m
or a; and m , while their bracketed expressions are functions of only
the variable ¢ or ¢_ and powers of the spheroidal parameter f or e'?,
By tabulation of the functions of ¢ and ¢, so that they may be rapid-
ly obtained by interpolation, it would then be very simple to multi-
ply them by the easily determined outer coefficients. Since con-
ventional trigonometric tables can be used to obtain the first-order
term ¢, and no tables are required to obtain the first-order term
¢ ., only short tables for the second- and third-order terms need be
d¥awn up. The third-order terms, which are small, vary sufficiently
slowly for visual interpolation,

In addition to their two pairs of main power series and the
basic quantities necessary to numerically evaluate them, these In-
verse and Direct computation forms generally contain one simple
closed trigonometric expression for each required final quantity ex-
cept when, for example, the trigonometric cofunction is given as an
alternative for occasions when a weak determination or unlinear in-
terpolation may otherwise result, The forms may appear cluttered
with rules for choosing signs, trigonometric quadrants, and so forth.
Actually, these do not entail any added calculations but simply de-
fine the problem without ambiguity. 1In addition, the choices pro-
vide for greater generality and more varied applicaticns., For ex-
ample, one may calculate either the shorter geodesic between two
given positions, or the longer geodesic around the spheroid's back
side, Also, the subscripts 1 or 2 may be assigned to either posicion
without fear of ambiguity. For less accuracy, terms in f° and e'*
may be omitted.

V. FORMULAS FOR VERY SHORT AND LONG GEODESICS

From its inception, the non-iterative derivation was develcped
primarily for very long geodesics; therefore, the auxiliary trigo-
nometric functions which were correspondingly designed provided the
greatest simplicity at the expense of generality, Recently, how-
ever, this Agency as well as the Army Map Service placed a requirement

N
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for a single set of formulas applicable to very short as well as very
long lines, since they were to be used also in the adjustment of tri-
angulation and trilateration ground nets, It was felt that the basic
long line formulas given in Appendices A and B appeared particularly
convenient for the electronic computers which were to make the calcu-
lations., However, in order to obtain the same or even greater accu-
racy for very short geodesics, the alternate formulas presented in
Appendix C were provided., The reason fcr the increased accuracy re-
quirement is easily understood when one considers, for example, that
if the length of a line is decreased a thousandfold, the positions

of the new endpoints must be known a thousand times more accurately
to maintain a constant azimuth accuracy. This means that the lati-
tude and longitude will have a greater number of decimals and, there-
fore, additional significant digits, 1In order to avoid the carrying
of too many fixed places, which are more apt to be affected by round-
ing errors if there is no spare digit capacity, Appendix C provides
formulas whose terms are generally very small when a geodesic is

very short, so the computations can be done conveniently by floating
point for greater decimal accuracy. To obtain the full required
accuracy, no additional terms need be added to the power series
formulas, because (as shown in the second paragraph of Appendix F)
they converge to more good decimal places for shorter geodesics.
Since many of the small quantities in Appendix C consist of sines of
small angles, their evaluation is especially adaptable to electronic
computers, which by means of floating point can readily calculate
trigonometric series that inherently converge to additional decimals
for such small angles. Actually, the formulas in Appendix C are
equally applicable to short and long lines, so only one set of
equations need be programmed into an electronic computer, A floating
point formula for a more accuratc cosine of large absolute lativude
is also included in Appendix C.

VI. CONCLUDING REMARKS

Appendix D provides the complete numerical calculations for a
very short and a very long geodesic--1 mile and 6,000 miles, re-
spectively. In each case, the Direct solution provides a check on
the Inverse. The discrepancies between the two types of solutions
are given at the end of Appendix D. The better positional accuracy
provided for the short line by the formulas of Appendix C is con-
vincingly shown,

Appendix E provides a non-iterative inverse sclution of higher
order accuracy (that is, through f2 and e'® terms) for use as a
theoretical check on Direct or other Inverse formulas., In Appendix
F, several intevesting types of inter-reiations of the terms of the
power series are discussed and illustrated. These include relation-
ships between numerical coefficients as well as algebraic terms. In
Appendix G, meridional arc formulas are derived as special cases of

the Inverse and Direct.




In conclusion, it should be noted that the Inverse case of
almost antipodal positions, treated on pages 24 through 25 of [1],
is omitted here because of its rare practical occurrence., Also, the
elimination of B by substitution in terms of the given B is not
undertaken because simple closed functions herein would become series
expansions.
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INVERSE COMPUTATION FORM

Il Geodetic latitude and lengitude of any point,

1

Given: B,

B, Ly

South latitudes and west longitudes considered negative.)

Latitude and longitude of any other point,

Required: @, S = Geodetic azimuths clockwise from north and distance.
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8y, by = Semimajor and semiminor axes of spheroid.
bO
f = Spheroidal flattening =1 - Ty

L=(L; -L)or (L -1L)+ [sign opposite of (L, - L;)] (360°)

Use whichever L has an absolute value < or > 180°, according
to whether the shorter or the back-side's longer geodesic is
intended. However, for meridional arcs (/L = 0% or 180°% or
360°), use either L but consider it (+) for the shorter and
(-) for the longer,

tan B = (tan B) (1 - f) when I8l < 459

(cot B) + (1 - f) when Bl > 45°

or cot 8

a = sin B, sin By; b = cos B, cos By; cos ¢ = a + b cos L.

sin ¢ = T'J(sin L cos By)* + (sin By cos B, - sin B, cos B, cos L)®

The sin ¢ is (+) for the shorter arc and (-) for the longer.
Compute the radical entirely by floating decimals to prevent
loss of digits, especially for very short geodesics.

¢ = Positive radians in proper quadrant, reference angle being
determined from sin ¢ or cos ¢, whichever has the smaller
absolute value.

¢ = (b sin L) + sin ¢; m=1-c".
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S.o= [+ f+ ) ¢)

+a [(f+ f%) sin ¢ - (53) @® csc 9]

i 4 £2

+m [- ____) ¢ - ) sin ¢ cos ¢ + (__) ¢ cot ¢]

+ 2% [- (;i) sin ¢ cos ¢]

a rf? R By i 3
+ m [(Tg) ¢ + (Tg) sin ¢ cos ¢ - ( ) ¢® cot ¢ (g_) sin ¢ cos® ¢]

AoLoo 5+ £) ¢)

+a[- (ii) sin ¢ - (fa) ¢ csc )

2
+m[- (é—ﬁm) o+ (Z—) sin ¢ cos ¢ + (£2) ¢® cot ¢] radians

i

cot o 5 = (sin By cos B, - cos A sin B, cos By) + sin )\ cos B,

cot ap y = (sin By cos B, cos ) - sin B, cos By) + sin ) cos B

For meridional arcs, consider ¢ as having 0° reference angle, and ob-
tain only the signs of the cotangents by disregarding the denomina-
tors. For other geodesics, replace cotangent by tangent when

‘cot al >1, by taking the reciprocal of the quotient's value.

Quadrant of o g Quadrant of og E
If L is (+) ...and cot (tan) of o 4 ...and cot (tan) of gy ﬁ
is (+) or (-), o 5 is in is (+) or (=), ag_, is in E
quad I or II, respectively, [quad III or IV, respec-
tively, {
If L is (-) ...and cot (tan) of o , ...and cot (tan) of O 4
is (+) or (-), o o is in is (+) or (-), ap_, is in
guad III or IV, respec- quad I or II, respec- :
tively. tively. §
5




APPENDIX B

e =

DIRECT COMPUTATION FORM

Given: B,, L, = Gecdetic latitude and longitude of any point 1.

Oy .n> S = Azimuth clockwise from north and distance to
any point 2.

Required: Geodetic oy ,, B,, and 1.

(South latitudes and west longitudes considered negative.)

a,, b, = Semimajor and semiminor axes of spheroid.
by
f = Spheroidal flattening = 1 - .
(o .
e'® = Second eccentricity squared = (ag - bg) + bg

tan B = (tan B) (1 - f) when Bl < 459

(cot B) + (1 - £) when IBl > 450

o
L
(g}
o)
T
el
It

cos By = cos By siny 53 8 = CoS By COS ¢y ,;

-

5’ -
m = (1 + E%“ sin® 8;) (1 - cos? Bo); ¢S = (§ + by) radians;
2
a, = (l+ Eé_ sin® ;) (sir® B, cos pg + g sin B, sin ¢S),
Gy = [¢S]

2 S (ox WA
+ sin cos
a [ = By cos 9]
3 11e't 13e't | ) e'd - Getd .
+ [~BZ—— bg - gz Singgcospg - o= $C0s Py + 55— singgcos ¢S]
4 14 -
+ aym [ 3§I sin ¢_ + EZ_ By COS @ - 5¢'7 sin ¢S cos® ¢S] radians
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cot o 5 = (g cos ¢, - sin By sin ¢ ) + cos B,

For meridional arcs, consider g, _, as having 0° reference angle,
and obtain only the sign of the cotangent by disregarding the de-
nominator, For other geodesics, replace cotangent by tangent
when !cot ab_1| > 1, by taking the reciprocal of the quotient's

value,

Quadranc of Uy

If (0% o , < 1809)

....and cot (tan) of gy, is (+) or (-),
®s ; 1s in quad III or IV, respectively,

If (180°< @y 5 < 360°)

....and cot (tan) of @, , is (+) or (-),
®y_, 1is in quad I or II, respectively,

cot X = (cos B, cos @, - sin B, sin ¢, cos oy .5) + sin ¢, sin o 4

For meridional arcs, consider ) as having 0° reference angle, and
obtain only the sign of the cotangent by disregarding sin o ,.
For other geodesics, replace cotangent by tangent when

lcot » | > 1, by taking the reciprocal of the quotient's wvalue.

Quadrant and Sign of )

when 0°<g,<180°
(sin ¢, considered

*

positive)

When 180°<g,<360°
(sin ¢, considered
negative)

and
(0°<p; ,180°)

«..then if cot (tan) of )
is (+) off (=), \ is in
quad I or II, respect-
ively.

...then if cot (tan) of )
is (+) or (~), A is in
quad III or IV, respect-
ively,

and
(180%<0; ,<360°}

...then if cot (tan) of )
is (+) or (-), the associ-
ated angle is in quad III
or IV, respectively, and

A is obtainad by sub-
tracting 360°.

...then if cot (tan) of i
is (+) or (-), the associ-
ated angle is in quad I

or II, respectively, and

A is obtained by sub-
tracting 360{. T

10
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T,

+ a [égi sin ¢S]

[3f2 3 - 3£ <in pg cos ¢Sj radians
4 4

+ m

L=l + L

[1f |13| >180%, modify L, by adding or subtracting 360%, according
to whether it is initially negative or positive, ]

sin B, = sin B, cos ¢y + g sin ¢,

cos By = +V/(COS 50)2 + (g cos P - sin By sin ¢0)2

Compute the radical entirely by floating decimals to prevent
loss of digits, especially for large absolute latitudes.

tan B, = (sin B, + cos B,)
Use whichever has the
or cot B, = (cos B, + sin B,) smaller absolute value.

Obtain tan (or cot) of B from earlier defined relation of B to B.
2

Determine (-90°sgas90°), applying sign of its tan (or cot).
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APPEIDIX O
ALTERNATE INVERSE AND DIRECT FORMULAS
(For very short as well as long geodesics)

The following alternate formulas for corresponding ones in
Appendices A and B are designed to maintain or appropriately in-
crease the accuracy of various elements of shert geodesics, without
decreasing the accuracy of long geodesics, The formulas specifically
take advantage of inherently small quantities and of small differ-
ences of given large quantities, so as to provide--through the
application of floating point calculations--increased decimal place
accuracy without requiring additional operational digits. The small
angles involved are especially adaptable to electronic computers,
which by means of floating point can readily obtain greater decimal
accuracy inherent in trigeonometric power series of such small angles,

1. FOR INVERSE SOLUTION:

ro| =8

]2

sing = % J(sin L cos B,)? + [sin(p,~ B,) + 2 cos B, sin B, sin®

cot ¢y 4 = [sin(By~ B, ) + 2 cos B, sin B, sin? %] + cos By, sin )

cot @y § = [sin(B,- B,) - 2 cos B, sin By sin® %] + cos B, sin )
where

(B,-By) = (B,-B,) + 2 [sin(B,-B,)] [(n + n® + n®) a - (n - n® + %) b]

2, FOR DIRECT SOLUTION:

By =B + (B,-By) + 2 [5in(By-By )] [(n + n®) cos (By+B, ) + nacos(anBl)]

=By ) = sin @, ©os (

3
]

e S -
- ¢ s5in® % sin By cos &,
&

T

where sin{

§.

b
1-2 9

ind the required approximate B, and cos g5 are obtained in Appendix B.

12




3, TFOR INVERSE AMD DIRECT AT GIVEN ABSOLUTE LATITUDES > 45°:

]

cos B = sin {(90 + B) T [sin (30 + B)] (n + n® + n®) sin B}

the upper and lower signs of which are applied for the northern and
southern hemispheres, respectively.

In the preceding three sets of formulas, n = (ay - by) +
(ay + by). Some smaller coefficients of the almost negligible n®
have been removed because they are unsymmetric, and because they
become even smaller in Parts 1 and 2 for short geodesics and in
Part 3 for large absolute latitudes. It should be noted that terms
containing powers of n are in radians.

The accurate floating point calculations for short geodesics
should be applied not only to the formulas of this appendix but, in
turn, also to associated formulas in Appendices A and B, as illu-
strated numerically in Appendix D. The prescribed increase in deci-
mal accuracy in the sine of a small angle, for example, can be ob-
tained not only from the sine series, but also from trigonometric
tables by taking the reciprocal of the large interpolated cosecant
of the angle. However, in addition to sufficient significant
digits, the table should have intervals small encugh for accurate
linear interpolation. Even better, of course, is a table of high
decimal accuracy for the small sines themselves.

13
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APPENDIX D

NUMERICAL TYLLUSTRATIONS OF INVERSE AND DI™ nCT

{Geodesics of approximately 1 and 6,000 miles for cach)

The two extreme cest distances noted above are chosen to ilius-

trate b’ calculation not orly the basic computation forms of Appen-
dices A and B but also the a'ternate formulas of Appendix C. The
degree of consistency of the answers has been determined belcw by
checking each Inverse solution apainst the corresponding Direct.

The resulting discrepancies, which for cach geodcsic are summarized
at the end of this appendix, therefore represent the combined errors

of the Inverse and Direct.

Inverse Solution

B

L
B,
L

a, (meters)

b, (meters)

f

n

L

tan

tan

CcOoSs

cos

SLin

sin

+20°
o
+45°

+106°

Long Ceodesic

6 378 385.000

6 356 911.94¢

.00 33670

+106”
.36274

. 99663

03367

47453

29566

94000 23

. 70829
.34100

. 70591

14

Short Ceodesic

+45°
+12°11'18"
+45°00'36".5
+12°12'09",5
6 378 288.000

& 5€ 911,946

.00 33670 0336/

.00 16863 40641

51%.5
. 99663 29966
."%698 57825
.7022¢ 31969
L708.7 32700
. 70561 33545

. 70603 8681,



Inverse Solution

a
b

sin L

cos L

cos ¢

sin (B, - B,)

@, - B,) radians
sin (B, - B,)
sin® L

sin ¢

¢ (radians)
c

m

(S +by) =

S (meters)

A\ -1L)>cs=

A (radians)

sin )

Long Geodesic

.24071 83383
.66584 44515
.96126 16959
27563 73558

.05718 67343

- e e e -

. 99836 3499%
.51357 83766
64109 99269
.58899 08837

.51869 17590
. 00080 87665
. 00156 22320
.00000 00188
.00000 01279
.00000 18468

649 412,505

.00511 33825
. 00000 76243
.00001 16616
.85331 48325
. 96035 63877

27877 51927

Short Geodesic

.000

. 000
. 000
.000
. 000
. 000

. 000

+.000
+.000
-, 000
-.000
. 000
. 000

. 000
.000
. 000
.000

.000

. 000

s s e e

49840 21342

.50159 78502

24967 90432

99999 99688

.99999 99687

17695 69927
17695 60928
17695 60919
00001 55849
25016 57049

25016 57075

.50062 20631

74937 75499

25101 08523
00042 05152
00063 22699
00000 03522
00000 07962
00000 10592

594.307 213
00084 51448
00000 21203
00000 00000
25010 10825

25010 10799

. 99999 99687

00001 56376
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Inverse Solution

cot Q/l -
cot Og -y
0y -2

Uz -1
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Direct Check

@ 2

S (meters)
ag (meters)

by (meters)

¢g (radians)

Long Geodesic

1.07455 96453
- 47245 22960
42956'30".03503

295917'18".59981

Long Geodesic

+20°
OO
42°56'30",03503
9 649 412,505
6 378 388.000
6 356 911.946
.00 33670 03367

.00 67681 70197

- wm m = e

.73204 75552
.64042 07822
.68817 03286

.59009 33386
1.51794 02494

16

Short Geodesic

99919 16383
.99883 88553
45901'23",40210

225901'59",82121

Short Geodesic

+45°
+12°11'18"
45901'23",40210
1 594,307 213
6 378 388.000
6 356 J11.946
.00 33670 03367
.00 67681 70197
.00 16863 40641
.99663 299606
.70829 81969
.70591 33545
.70739 26381
.70682 08083
.50104 49301
.50063 99041

25146 93699
.000 25079 90085

wsasuiluyil gy
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Direct Check Long Geodesic Short Geodesic
sin ¢ .99860 34425 .000 25079 90059
cos ¢, .05283 14696 .99999 99685
a, .24057 82171 49924 27565
¢p (radians) = +1.51794 02494 +.000 25079 90085
- .00081 30002 -.000 00042 37199
.00146 29306 .000 00000 00000
+ .00000 00874 +.000 00000 17897
+ .00000 39825 .000 00000 00000
+ .00000 25543 .000 00000 00000
+1.51567 09428 _ +.000 25037 70783
sin ¢, .99848 09807 .N00 25037 70757
cos g, .05509 74693 .99999 99687
cot @, - 47245 22450 .99883 88542
Gy 295°917'18",59121 225°01'59",82132
cot )\ = -.29028 29979 tan ) = .000 25010 10884
) 106°11°13".61256 51".58705 146
(L - A) + cos By = -.00511 09099 ~.000 00084 44411
+.00000 40853 +.000 00000 21292
+.00000 73513 .000 00000 00000
L (radians) 1.85004 89647 .000 24967 90471
i 105959'59",99117 12912'09".50000 627
sin B, .70591 33687 70603 86812
cos B, .70829 21829 E .70817 32700
-
tan g, .99663 30364 B .99698 57817
oA
tan B 1.00000 00399 E 3| 1.00035 39769
[i]
B, 45900'00". 00411 45°00'36",49992
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Direct Check Long Geodesic Short Geodesic
sin® % “ e .000 00001 56376
sin (B - B,) 00 === .000 17695 60922
(B - By) radians o« w - - - .000 17695 60931
cos (By +B,) - -~ -.00017 69566
cos (B - B)  --=--- .99999 99841
B, (improved value) = - - - - 45900'36",50000 005

________________________________________ e s

Discrepancies between :

Inverse and Direct Long Geodesic Short Geodesic
AB, 0". 00411 0'".00000 005
AL, 0".00883 0".00000 027
boy 0".00860 0".00011

In addition, the preceding Inverse and Direct illustrative examples
contain several common intermediate and secondary components whose
values can be compared. Also, since the solutions of the long
geodesic are illustrated by the same numerical problem that was used
in reference [1] for the earlicr form of the Inverse method, oppor-
tunities for other comparisons are available., It is apparent that
the extremely high positional accuracy for the short geodesic is due
to the use of alternate fermulas given in Appendix C., The azimuth
error is consistent with this positional error, in view of the line's
shortness. Comparable accuracies are also obtainable at large
absolute latitudes, but only if interpreted relative to the in-
creasing convergence and closeness of uhe meridians in polar

regions.

18

gL LV CE TR EHPT iﬂl’ﬂ{




S vl

APPENDIX E

THEORETICAL FORMULAS FOR HIGHER ACCURACY

The results of the illustrative numerical examples given in
Appendix D indicate that the formulas in Appendices A through C
provide sufficient practical accuracy. For theoretical purposes,
however, the formulas could be extended through f3 and e'® terms or
beyond. The outer coefficients of the formula for (S + by) in

Appendix A would then include, for example, the higher order combi-
nations a®, m®, a®m, and an®. Similar orderly extensions should be
expected for the () - L) + c formula in Appendix A and the ¢, and

(L - 1) + cos B, in Appendix B, except that in the case of the

latter two their outer coefficients will bear the subscript 1, and
their components a, and m would have to be properly defined to
higher powers of e'?, If necessary, appropriate formulas in Appendix

C can also be extended,

In the present appendix, only the (A - L) + c power series of
Appendix A will be given to the next higher order terms, since it
provides a non-iterative rigorous solution for the quantity ) which
is required in most of the classical methods for calculating the
Inverse of long geodesics. The unique form of the extended () - L)
+ ¢ power series given below has been derived from the top of page
18 of [1], by substituticn in terms of a, m, ¢, and f. The series
is followed by accurate Inverse distance and azimuth formulas taken
in large part from pages 14 and 15 of reference [1]. The resulting
method of solution can be used for precise computation of Inverse
problems, especially as a theoretical check on Direct or other In-

verse formulas,

A_L_I__ = [(£+ £ + %) ¢]

- £ ,
tal - =+ 1) sing - (£ +4% ¢ cscg

763
+ () ¢ ese g cot ¢

@ 3 3

+m[- (égm + 3f%) ¢ + (g— + ;—) sin ¢ cos ¢

£3
+ (£ 4 41%) ¢ cot g - (5) ¢° csc® g - (£2) ¢ cot? ¢

3
+a® [(£) p+ () sin g cos g + (£) ¢ csc? 9]

19




3 3 3
+ m? [(z%g—) ¢ - (%g—) sin ¢ cos ¢ + (é—) ¢ cos® ¢

3 3
&5 ¢ cor g + ('é'") sin ¢ cos® ¢

+ (g_) ¢ csc® ¢ + (2£%) ¢ cot® ¢)]

+ am [(f%) sin ¢ - (ggi) ¢ cos ¢ + (253) ¢® csc ¢

£ 768
- (7) sin ¢ cos? ¢ - (=5 ¢® csc ¢ cot ¢] radians

where the component quantities are again defined in Appendix A,
while some alternate definitions are found in Appendix C.

Next, ¢, is obtained in the same manner as ¢, except that the
value of ) obtained from above is now to be used in place of L.
Then centinue as follows:

cos B, = (b sin ) % sin ¢y; cos 20 = (2a + sin® ﬂe) - COS (e

Ay = 14 E%i sin® B, - égéi sin* B, + %%éi sin® Bo
Co = £ 10 8o - S o e
D, = %é%— sin® Bo

S =by (A ¢y t+ By sin ¢y cos 20 - C, sin 2¢, cos 4o

+ D, sin 3¢, cos 6g)

To complement the above geodetic distance, S, the azimuths

@, 5 and @, , are obtained from formulas given in Appendix A or C.

20
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APPENDIX F

INTER-RETATIONS OF THE TERMS OF THE POWER SERIES

As noted earlier, the coefficients a and m in the (S + b,) and
(A - L) + ¢ Inverse power series in Appendices A and E display a
unique set of product combinations. The identical simple pattern
is also repeated in the two Direct power series in Appendix B, ex-
cept that it occurs instead with the subscripted a and m . Al-
though not shown in this paper, even the higher degree combinations
(such as a®m, m®a, a®, and m®) appear to enter in orderly fashion
in the further extension of the power series, It is of significant
importance that the a and m (or a, and m ) combinations are com-
pletely factorable from the power series terms, since this permits
the latter to be tabulated as a function of only the variable ¢ or
g and the parameter f or e'?, Electronic computer programming and
calculations also become simpler, whether for producing just the

table or for calculating the entire Inverse or Direct,

Arother interesting inter-relation of the terms of the series
concerns the numerical coefficients of the powers of f and e'®,
It should be noted, for example, that in Appendix B the numerical
coefficients related to the mf terms of the ¢, power series are:
i1 13 _ 1

The total of the above four numbers is found to be exactly zero.
Upon closer inspection, it is found from the power series in Appendi-
ces A, B, and E that the zero sum occurs with all sets of terms
having m or m as one of the factors, even for the (S + b,) series
in Appendix A, if it is modified as shown later, When different
powers of f are present, the sum is zero separately for the numeri-
cal coefficients of the f terms, f° terms, and so forth, such as

in the (} - L) + c series in Appendix E. In all instances described,
the sum is zero by virtue of the fact that each term--which is a
function of ¢ (or ¢S)n—is first put into a form which satisfies the
following condition: The algebraic sum of the exponents of ¢ and
sin ¢ (after all trigonometric functions of ¢ are converted to sines
and cosines) is unity. Actually, the above condition can be (and
has been) satisfied even for the non-m and the non-m series terms,
For very short geodesics (which of course have a small arc value ¢
and, therefore, sin ¢ approaches ¢ and cos ¢ approaches unity), the
resulting unity exponent implies that every term is of the small
order of ¢, times its numerical coefficient and the proper power of
f or e'. Since even the omitted terms of the series contain that
small order of ¢ (or ¢S), the power series converge to a greater
number of decimals for short geodesics, This is shown by the much
better positicnal coensistency obtained from the numerical example
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for the short geodesic in Appendix D. For terms which have m or my
as one of the coefficients, the convergency for short geodesics is
even greater because (as noted above) the sum of the numerical coef-
ficients is zero separately for each power of f or ¢'?, and ¢ or ¢g
is practically a common factor,

As for the (S + by} series mentioned in the preceding para-
graph, the expression given in Appendix A can be reduced to the
following form:

L [(L+ £+ £°) 9]

+ (mcos ¢ -a) [~ (f+ £%) sin ¢ + (gi) ¢? csc ¢]

-2
+ m [- ( 2 ) ¢ + (f R ) sin ¢ cos ¢]
fB
+ (mcos ¢ - a)? [- (3) sin ¢ cos o
= £° i T 3
+ w [(TE) ¢ + (77) sin ¢ cos ¢ - (g—) sin ¢ cos® ¢

]

2
+ m(m cos ¢ - aj [(-;f—-)- sin ¢ cos® ¢ - (f--) ¢° csc
9 ) ¢ $ -3 9

The compound coefficient (m cos ¢ - a) is an expression which
appeared extensively in the course of the original derivation of
the Inverse solution. As used above, it causes the numerical coef-
ficients ¢f the terms with the facLor m to add to zero, just like
the other power series., It is interesting to note that the next
higher order extension of (S + bo) continues to give the proper
zero sum for the numerical coefficients of applicable terms, wlen
the additional prescribed product combinations of the same

(m cos ¢ - a) and m are used.

In conclusion, it is worth noting that, of the four main power
series given in Appendices A and B, only (S + b,) does not lend it-
self tov completely factoring out the ellipsoidal parameter from each
series of terms. The capability of factoring for all four power
series (at least to the extent of the number of terms given) may be
important. It weuld mean, for example, that the total value of
each series of terms could be tabulated independertly of any specific
spheroid flattening or eccentricity. (Of course, the parameters
would then be made a part of the external coefficients instead.)

In the (S + by; formula given in the prescnt 1ppendix, only the
terms whose coefficient is (m cos ¢ - a) do not tend themselves to
factoring out the function of flattening. Those terms, howcer,
can be represented as in the following:

22
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[ (mcos ¢ -a) (1 - —_é;éi-J 1[ - (£+f) sing ]
2sin®

where the unwanted portion of flattening has been transferred to

the external coefficient, This new compcund coefficient may be used
in place of the previous (m cos ¢ - a) throughout the (S + by)
expression for consistency, since the extrancous £ terms which are
introduced are negligible,
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MERIDIONAL ARC AS SPECIAL CASE OF NON-ITERATIVE INVERSE AND DIRECT

An interesting indication of the simplicity and rapid con-

vergence of the non-iterative inverse is to reduce it to the special

case of meridional arc distances, for northern latitudes up to 90°
from the equator. Since B, and L are then 0°, the following result:

a=0,m=1, § =p, radians.

Therefore, such meridional distances, SM’ become:

f2
+ == ) sin B, cos B,

~J3

_ £ 9f°
SM—bo [(1F§-+;L‘6—')Ba - (

tof h
(e Y

- ( éf.) sin B, cos® g, ]

Similarly, B, can be derived for the corresponding § by
letting B, and oy ., equal 0° in the Direct solution, whence:

a =0, m =1, B = ¢y

Then by substitution into the ¢, power series, there results:

13 _]:18'4 )

_ e SR I
o = (-t ) oyt

sin cos
4 64 ) ¢M ¢M

14 14
+ ( é%E_ ) sin @M cos® ¢M - ( ng ) @M cos? ¢M radians,
where =(8S 2D radians,
6, (S, +0)

As a check (the complete details of which need not be shown),
the above Inverse and Direct meridional arc solutions were compared
mathematically and found to be fully consistent with each other.
Essentially, dividing the Inverse meridional formula by by produced
¢, as a function of By, from which sin ¢y and cos ¢, were then ob-

tained by expanding in series around sin §, and cos'BQ, respectively.

Substitution intc thc Direct meridional formula finally made the
right side identically equal to the left side's B,, up through all
e'* terms.
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SUMMARY

Improved practical and theorctical formulas are prosented for

the caicuiation of gerodcotic distances, a~ amuths, aad positions on

spheroic, the formulas are designed for use with either electroni
compnters or desk calcu.ators., For the latter, the formulas lend

themselves to the -onscruction of useful inteipolation tables

The report inciudes convenient computation Zorms and auxiliar
equa: ions which assure : high degree of accuracy for any geodetic
line, no matter hoa short or long (up to half or fully around the
earti:) and regardless of its orieatation or location. Numzrical
examples illustrate the complete calculation procedire.
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